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Second law analysis of convective droplet burning
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Abstract—The entropy generation due to burning particles in a gaseous stream is considered and the
contributions to it compared. A second law analysis is undertaken in order to minimize the entropy
generation and, therefore, the lost available work. The optimum flow conditions from this thermo-
dynamically advantageous perspective are determined for a burning droplet at low Reynolds number and
an optimum transfer number obtained. The transfer number so obtained depends directly on the square
of the relative velocity, and inversely on the net enthalpy rise due to burning and the ratio of ambient to
flame temperature. In realistic flows, where the transfer number and net heat release are fixed, these
quantities are related to the relative velocity and ambient to flame temperature ratio in order to operate
at optimum conditions. The square of the relative velocity in such flows is a small fraction of the net heat
release so that, to operate at optimum thermodynamic conditions, it is determined that the droplet Reynolds
number must be large suggesting a large droplet size and low gas viscosity. Circumstances pertaining to
engineering practice are also considered and it is concluded that within constraints practice is consistent
with the implications of the second law analysis.

1. INTRODUCTION

THE Usk of the second law of thermodynamics has
found extensive application in problems involving
heat transfer. Bejan [1-3] presents the methodology
behind this approach as it is applied to heat and fluid
flow, and reviews the literature in the area. San et al.
[4], and Poulikakos and Johnson [5] present analyses
for forced convection phenomena when irreversi-
bilities due to mass transfer are important compared
with those due to heat transfer and fluid friction. The
key to analyses conducted by using the second law lies
in evaluating the degree of irreversibility in engin-
eering systems [6, 7] so as to determine the available
work. The various constituents of the irreversibility
(e.g. from heat and mass transfer, fluid friction, drag,
and heat release) are then examined to understand
their interrelationship and the mechanism of entropy
generation in the flow. An optimum operating
condition corresponding to a minimum entropy
generation can be specified upon comparing these
contributions.

Work, that would otherwise have been available,
but is lost due to entropy production [2], termed as
lost available work, is related to the entropy gen-
eration and a reference temperature T, by the
relationship

PVk)st.D = T()g

When the entropy generation rate is minimized, so is
the lost available work, and maximum work is avail-
able per unit mass of the flow rate. From a practical
and operational standpoint the implication is that
work done on the flow is minimized and that extracted
from it maximized.

Despite the attention afforded to entropy gen-

eration in convective flows [2, 4, 5] reacting flows have
not yet been extensively scrutinized [8, 9]. Arpaci and
Selamet [9] examine the entropy generation in pre-
mixed flames stabilized above a flat flame burner and
relate the tangency condition, ie. the minimum
quench distance, to an extreme of entropy generation
which they determine to be inversely proportional to
the Peclet number.

In this study the entropy generation equation appli-
cable to chemically reacting flows is described and
attention paid to multiphase combustion by con-
sidering the burning of particles in a fluid stream. This
situation is analogous to that of a burning cloud of
coal dust or liquid spray in a flow. The combustion
of droplets in a fluid stream is considered, and use
made of relationships established previously [10-12]
that describe droplet burning, in order to examine
the various contributions to the irreversibility. These
contributions are compared in order to optimize the
flow conditions by minimizing the entropy generation.
Though the method is applicable to the combustion
of both single droplets and sprays, for the purpose of
exposition single droplets burning at small Reynolds .
numbers are considered.

For burning droplets, in order to minimize the
entropy generation, a trade-off must be considered
between the competing irreversibilities due to the mass
loss from the droplet (which dictates the net enthalpy
flux into the flow) and drag. While an increase in the
transfer number increases the mass loss, it decreases
the drag due to a blowing effect, and it is possible to
determine a state where the decrease in drag optimally
offsets the increase in heat transfer. At this point both
the entropy generation and lost available work are
minimized.
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NOMENCLATURE
A stream tube area Wiesa lost available work
a droplet radius W reaction rate
B,  transfer number X spatial coordinate
C concentration of the products Yy, fuel mass fraction at the particle surface.
C  cocflicient of drag
Fy drag force Greek symbols
g entropy generation rate o chemical potential
g" entropy generation rate per unit Al heat of reaction
volume i dynamic viscosity
H extensive enthalpy p density
h intensive enthalpy ¢ viscous dissipation
k thermal conductivity Q defined in equation (15).
L heat transfer to the particle (e.g. latent

heat of vaporization)

mass flow rate

mole number

entropy generation number
pressure

heat release from the particle
heat flux

universal gas constant
Reynolds number
extensive entropy

intensive entropy
directional entropy flux
Sherwood number
temperature

velocity

volume

relative velocity

@
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Subscripts

f subscript on the temperature associated
with the particle (¢.g. flame
temperature}

i ith species

j. &k repeated indices

in conditions at the stream tube inlet

0 subscript on the reference temperature

opt  pertaining to optimum conditions

out conditions at the stream tube outlet
p conditions pertaining to the particle
20 ambient conditions.

Superscripts
0 reference state
— indicates that the property is calculated
on a per mole basis.

2. ENTROPY GENERATING IN CHEMICALLY
REACTING FLOWS

In a fluid flow in which heat, mass transfer and
chemical reaction occurs, the conservation of energy
is expressed as

%ﬁ:(quuw+(—Amw+%§. (1)
Use of the Gibb’s relation
and the equation of change for the entropy of a fiuid
Ds .
P, = (Vo) +d A3)

enables description of the local rate of entropy gen-
eration [2-4, 8, 9, 13-15] in the form

kleTh i
g = 3 [( ‘] + T [ﬂ(ftf" +{— AW

" ON,
“(ﬂuk)zi: aié;‘k']- (4)

In developing equation (4) from equations (1)-(3) it
is noted that by definition the local entropy flux is
equal to the local energy flux divided by the local
temperature {15], i.e.

sp=q;lT.

For ease of expression, the expressions represented
by equations (1) and (4) assume a one-step overall
reaction for the combustion of fuel; in the event of
simplicity not being desired the term (— Ah)w is easily
replaced by an appropriate representation of the heat
release.

For a multiphase flow, such as that involving the
flow of a gaseous stream over a burning droplet, the
control volume approach [2, 5] is used, and applied
to an adiabatic stream tube, in order to develop an
expression consistent with equation (4). In the control
volume, depicted schematically in Fig. 1, the heat and
mass transfer and fluid friction associated with the
flow of a gas around a particle are considered. The
equations for the conservation of mass, energy and
entropy under steady-state conditions are expressed
as
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Stream Tube

FIG. 1. Schematic diagram of the control volume with exter-
nal flow over a burning particle.

Hli + 11, = Py
Wil i + Qi — Liiny + i+ gV = gy hou

".Iinsin + Q:;?P - “[:;nTp +mpsp = moutsout _g (5)
The enthalpy rise within the stream tube has two
components: one due to products issuing from the
burning particle {(r7,,), and the other due to the net
heat release m,(Q—L) from the particle. Similarly,
contributions to the entropy rise in the stream tube
arise from the products (m,s,), the net heat release,
and from the entropy generated by irreversibilities in
the flow g. It is assumed that the heat release occurs
at a characteristic temperature T which, considering
the range of temperatures around a burning particle,
is an average flow temperature. For the purpose of
this study T; is set equal to a flame temperature
demonstrative of the combustion phenomena so that,
for inclusion in the entropy conservation equation,
the net heat release is assigned this temperature. The
viscous dissipation appearing in equations (5} is
an average term that is assumed to be uniformly dis-
tributed over the entire stream tube volume V.

The canonical relation

dH = TdS+VdP+) o, dN,
applied to the flow field under consideration assumes

the following form :

moulhoul - minhin = Too [mOUtsout —‘minsin]

Hil,
+ ;)_. {Pout - Pin] +ap,<x:v {Npout - Npiin}' (6)

The enthalpy and entropy rises in the stream tube are
included in the incremental terms in equation (6), one
appearing on the left-hand side, and the other being
the first contribution to the right-hand side of that
expression.

The entropy of the species issuing from the particle
is related to its enthalpy and chemical potential by the

relation [16]
o
b= [hp - ﬁ/ﬂ M

The production of species due to mass transfer from
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the particle can be expressed in terms of the mass loss
from the particle and the molecular weight of the
species entering the flow as

N,

pout

. ®
When a mixture composed of several species emanates
from the particle, e.g. the products due to a burning
droplet or coal particle, equations (6)—(8) are appli-
cable by considering the mean of bulk properties of
the product mixture.

If the nonuniformity of the flow is such that the
area of the stream tube is almost constant from entry
to exit, the force Fp, required to maintain the control
volume stationary is

FD = Aout(Pin - Pcut) (9)

when the fluid velocity is equal to the relative velocity
of the particle. If the mass loss from the particle is
small compared with the gaseous flow into the stream
tube, the area of the tube can be expressed as [2]

m.
= e 10
pC(l‘ ;fr ( )
By use of equations (5)-(10) an expression describ-
ing the entropy gencration in the flow is derived,
namely,

11
-l (i-1)
uov

_1_ O‘piw Ro ¢ A DVr +
Wp T»f- Tf Tx: T’L .

A out

(an

Equation (11) is the general equation for the entropy
generation in an adiabatic stream tube caused by the
flow of gas over a particle transferring heat and mass
to the flow, and by fluid friction in the tube. Though
the term containing the chemical potentials can be
further simplified [5] this is unnecessary for the appli-
cations that are now considered. It is noted that were
the stream tube nonadiabatic a term involving heat
transfer at the boundary, and assigned to a boundary
temperature, would appear on the right-hand side of
equation (11).

3. ENTROPY GENERATION DUE TO DROPLET
COMBUSTION

Several correlations, that are of roughly similar
form, express the mass loss from a burning droplet
[10, 12, 17-19] in terms of the Sherwood number Sh
and a transfer number B,,. For sake of illustration a
relation from refs. [10, 12} is chosen that describes the
mass loss and Sherwood number in the form

m, = 2np..a Sh By,
2In(1+By) (+U+Re)V?) f,(Re)-2

Sh =
BM (I+BM)O‘7

(12)
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The relationships described by equations (12) o4
assume a Schmidt number of unity. If fuel vapor is 6B, =0

absent in the ambient flow the transfer number is
related only to the concentration of fuel vapor at the
droplet surface [11], i.e.

YF‘S

By =+t
M I- Yy,

13

The fuel vapor concentration at the droplet surface is
in turn related to the enthalpy of the fuel, net heat
release due to its burning, the latent heat of vapor-
ization and conductivity of the liquid fuel, and
the ambient temperature and oxidizer concentration
[10-12].

Considering the droplet to be a sphere the force on
the droplet is described in terms of a drag coefficient
where [12]

Fp=3p, Vina*Cy
Y
Cp = R‘e,}(z(Re)(] + By~

fo(Re) = (1+0.2)Re®®*, Re>1

fr(Re) =1, Re<I. (14)

It is instructive to note that equations (12) and (14)
indicate a trade-off in terms of the transfer number in
the context of equation (11). On the one hand an
increase in the transfer number decreases drag, a resuit
which is beneficial in minimizing the entropy gener-
ation, but on the other it increases the mass loss from
the droplet and thus the irreversibilities associated
with the heat and mass transfer. Clearly, the choice of
a particular correlation is not of critical significance
since the behavior relating the transfer number to
the drag and mass loss should prevail in all such
expressions, and so 1t is reasonable to state that, from
a thermodynamic standpoint, an investgation to
determine an optimum transfer number at which the
entropy generation is minimized can be conducted. In
fact, perusal of equation (11), in light of equations
(12) and (14), elucidates that the only apparent term
that can be traded-off in order to minimize the entropy
generation is the transfer number. Although the trans-
fer number is a thermodynamic property it can be
altered in several ways for a particular fuel. A change
in either the ambient temperature, liquid fuel tem-
perature, or ambient oxidizer mass fraction will mod-
ify the transfer number ; obviously, there are limits in
which such changes can be made.

Since the analysis that is developed is uniformly
applicable, for the purpose of exposition, and in order
to facilitate the study, the low Reynolds number cor-
relations of equations (12) and (14) are assumed to
apply to droplets moving with any Reynolds numbers.

An optimum transfer that minimizes the entropy
generation in the flow is obtained in a straightforward
manner at a given Reynolds number by setting

so that

{2(1 + Byop) T H 1+ R)' = 11+ By )™’

0.7Bpon ||
S [t | ELR(E

where

For small Reynolds numbers a description of the opti-
mum transfer number is obtained in the form

Qy
BM,op( = »5 -L

From equation (16) it is observed that the optimum
transfer number obtained for small Reynolds num-
bers is independent of the transport properties of the
droplet and its ambient, and of the droplet size. The
optimum transfer number increases with increasing
relative velocity since the drag is reduced, diminishes
with an increase in the net enthalpy rise due to the
burning droplet, and increases with a reduction in
the ratio of the ambient temperature to the flame
temperature. Sufficient care must be used while apply-
ing equation (16) so as to maintain the right-hand side
of the equation positive.

In a real system there is little control over the trans-
fer number, and the heat release and latent heat of
vaporization for a given fuel. The specific enthalpy
associated with the products is fixed by the choice of
fiquid fuel and the stoichiometry related to the oxi-
dizer content in the gas. Equation (16), in this case,
describes an optimum relative velocity that minimizes
the lost available work for a given gas flow rate and
temperature ratio 7,./7; while the other parameters
are maintained constant; the equation assumes the
form

10 T (Q+h T
L 0.2 R o
Vi= 3 (1+ By) [L( [ 1)(1 Tr>

O{p,r T

0|

Equations (16) and (17) are applicable to the com-
bustion of single droplets at low Reynolds numbers
and to sprays that have associated with them a small
mean Reynolds number. In the case of sprays, cqua-
tion (16) assumes that the droplet loading is dilute so
that the entropy rise due to mixing of the products in

(16
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the flow is negligible and that the ambient temperature
remains basically unchanged due to heat release from
the spray. The stream tube, in this case, is assumed to
contain an ensemble of droplets which are either part
or whole of the entire spray, which enables separate
analysis of the different regimes of a spray.

To the above analysis the entropy generation due
to mixing in the stream tube may be added by use of
appropriate empirical relationships. For an ideal gas
the chemical potentials are related to the con-
centrations of a chemical species by the expressions
[S. 16, 20}

%, = «g+RT In (P/P%)

P=CRT

0 = ) = r
oy = S (T—T"+2,Tin e
+B+T58—TRIn P° (18)

and a simplified expression for the entropy rise due to
mixing (cf. equation (11)) is developed after assuming
that the specific heat of the products is constant over
a wide range of temperature, so that

(% e} _ | R
WA\T. T.)] LW,

If the products and reactants are assumed to have
similar properties (such as those of nitrogen, for
instance) then the concentration of the products near
the particle surface may be assumed to equal that in
the flow, i.e. C, = C. In that case the second term on
the right-hand side of equation (19) is zero allowing
an estirnate for the entropy gain due to mixing to
be made on the basis of the mixture thermodynamic
properties and the ambient to flame temperature ratio.
Assuming the products to have the same specific heat
as nitrogen {taken as 0.2911 cal g~ ' at 1300 K), the
same molecular weight (28 g mol™ '), and the tem-
perature ratio (7,./T;) to be equal to 300/1800, a
numerical value of approximately 0.4 cal g7' K~ ' is
determined for the left-hand side of equation (19). If
the fuel has a typical heat release of about 3 keal g~
clearly the entropy rise due to mixing is small com-
pared with that due to the heat release irreversi-
bility, i.e. Q(1/T,. —1/T;). Though it is not necessary
to drop this term it can be eliminated following the
reasoning above, which is done in the subsequent
analysis for the sake of brevity and convenient
formulation.

The high Reynolds number correlations of equa-
tions (12) and (14) can be applied to equation (11)
to obtain an implicit expression relating the transfer
number at optimum conditions (i.e. when the entropy
generation is minimized) and the Reynolds number
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FiG. 2. The variation of the parameter ) with the transfer

number B, for constant values of the Reynolds number in

order to minimize the entropy generation. The dashed line

uses the low Reynolds aumber correlations and the solid
ones the high Reynolds number correlations.

to the quantity Q. In Fig. 2 results are presented that
show the variation of Q with B, for different Reyn-
olds numbers. The arrow-marks the condition when
By, . equals 10, a value expected for the burning of
many hydrocarbon fuels at steady-state conditions.
The high Reynolds number correlations were applied
for Re = 1 and the low Reynolds number correlations
for Re < 1. The competing irreversibilities define two
regions of optimum operation: one, in which for a
given By, .., the quantity Q decreases as the Reynolds
number is changed from a value of a tenth to 300 and
another where it first decreases and then increases as
the Reynolds number is changed over the same range.
For a given fuel, when the stoichiometry, ambient
temperature and initial fuel temperature are fixed, the
only variable in the term Q is the relative velocity, the
results presented in Fig. 2 show that if the optimum
transfer number equals 10, the square of the relative
velocity at optimum conditions decreases by a factor
almost equal to 2 when the Reynolds number is
changed from a tenth to 300. This is better explained
by considering a dimensionless entropy generation
number N defined as

g
Q+h, 1 T\
2mu<,aL( i3 —1 T. 1— T,

Use of equations (11), (12) and (14) yields the fol-
lowing relation for N,

N, =2In(1+By) +[[1+(1+Re)""]Re* " 2]
By 3VAH1+0.2Re™)(1+ B,) "2

A+ BT (2t (T
L T

(20)

Upon examining equation (20) it is clear that in
order to maintain the same value of the entropy gen-
eration number, at a fixed transfer number, the quan-

N, =
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tity Q must decrease as the Reynolds number is
increased. For fixed values of Q and the Reynolds
number an expression similar to that of equation (15)
can be obtained and an optimum vaiue of the entropy
generation number obtained. In Fig. 3 the change in
N, is presented for two cases, i.e. for the guantity Q
possessing values of 3 and 2.5 with the droplet Reyn-
olds number kept at 10. For both cases it is seen that

/’V has a minimum value. as defined lmr equation (20
unimum value, as aenned by cquation (20),

at an optimum transfer number. The value of B,, .,
changes from approximately 5 to 10 as € changes in
magnttude from 2.5 to 3 as shown in Fig. 2.
Application of the above analysis to realistic flows
reveals some interesting implications since the relative
velocity is usually several orders of magnitude less
than the heat release when calculated in comparable

PRPVE NS P

units {a net heat release of 3 kcal g - CU!ICprHUb to
a velocity squared of 12,5 x 10° m? s™%). This implies
that the entropy generation number is always above
its mintmum value for the usual transfer numbers
encountered unless the ratio (T, /7)) is very small
Thus, as determined from Fig. 2, from a thermo-
dynamic perspective these flows should operate at
high droplet Reynolds numbers suggesting a large
droplet size or a low kinematic viscosity in the gas
phase. Some control over Q may be obtained by vary-
ing the temperature ratio between the ambient gas
and the flame though significant design restrictions
apply.

This point is illustrated by considering the entropy
generation number defined by equation (20) and mini-
mizing it with respect to the Reynolds number when
Q and the transfer number are fixed. The optimum
Reynolds number to obtain the minimum entropy
generation number N, .., for these conditions is deter-
mined by the solution to the following equation:

(+Re" [ 1
7”}2()“‘553 [0037 IT(I-{-RQ‘ z)
Re \/(l"“BM)
— 0.63Q . 2D
3(1+R)] M @t
0=3
N, = *
Q=123 $

Bu

Fic. 3. The entropy generation number N, plotted as a

function of the transfer number B,, showing a minimum

corresponding to the position of the optimum transfer num-

ber for that flow. The Reynolds number has a value of 10
and the two cases correspond to Q = 2.5 and 3.

1. K. Purs

0.4

034

TRy,
0630 M
By
0.2 4
ol
1 10 06 1000
Re
i 4 The phanoe tha amtirnm Ravnal imber that
FRELS N DI B 21 wuaué& in e U}Juuxuu{ x\cyuuxua DUMmoeT inat

minimizes the entropy generation number when the parameter
Q and transfer number B,, are fixed.

In Fig. 4 the variation of the optimum Reynolds
number for a fixed right-hand side of equation (20) is
presented. The results show that if either Q or the
transfer number becomes smaller in magnitude the
optimum Reynolds number which minimizes the
entropy generation number increases, supporting our
earlier inference. Examination of Fig. 4 shows that if,
for instance, the Reynolds number has a value equal
to 10, N, is minimized when the right-hand side of
equation (20) has a value of about 0.25. In the context
of Fig. 2 the implication is that while on the curve
corresponding to a constant Reynolds number of 10
there is a unique operating point defining ¥, ,;, where
the combination of Q and B,, prescribed by the right-
hand side of equation (20) equals 0.25.

High Reynolds numbers also occur if the relative
velocity of the droplets is high which, moreover,
enhances gas phase mixing. However, as mentioned
above, for reasonable relative velocities such as those
expected in practice, the term Q is small due to the
large heat release and the other approach, that of
increasing the drop size, should be considered for the
reasons stated above. An increase in droplet size may
be possible only in certain applications since other
considerations, such as those involving residence time
and combustor aerodynamics, may suggest selection
of a smaller droplet size. In engineering practice the
ambient temperature is maintained as high as the
material and wall transfer allows [21] which reduces
the entropy generation as per the results of equation
(11). In practice an increase in the drop transfer
number is desirable and accomplished by raising the
fuel temperature (within thermal stability limits) and
the ambient flow temperature (given the above con-
strains). Again, for given value of Q, as the results of
Fig. 2 suggest, an increase in the transfer number
implies an increase in the Reynolds number.

4. CONCLUSIONS

In this study a second law analysis is applied to
reacting flows in order to minimize the entropy gen-
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eration and lost available work. Specifically, single
droplet and spray combustion in a convective environ-
ment is considered and the various contributions to
the entropy generation are evaluated. It is determined
that for droplets burning at low Reynolds numbers
the entropy generation is minimized by comparing
two terms: one, involving the mass loss from the
droplet, and the other the drag force. An expression
for an optimum transfer number is obtained which is
observed to be directly proportional to the square of
the relative velocity and inversely proportional to the
heat release and the temperature difference between
the droplet and its surrounding flow. The optimum
operating condition when the entropy generation and
lost available work are minimized is one that provides
the maximum net energy output per unit mass of the
flow at the combustor exit.

In practical flows the transfer number is fixed and
the square of relative velocity is much less than the
net heat release, so that in order to optimize these
flows from a second law standpoint and operational
droplet Reynolds numbers should be large, suggesting
a large droplet size and low gas viscosity. Though
considerations other than those involving thermo-
dynamics may encourage or inhibit application of the
above results in specific circumstances, within con-
straints enginering practice seems to be consistent with
the results of a second law analysis.
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Theory. Benjamin/

ANALYSE DE LA SECONDE LOI POUR LA COMBUSTION D'UNE GOUTTELETTE
AVEC CONVECTION

Résumé—La génération d’entropie due 4 la combustion de particules dans un écoulement gazeux est
considérée. Une analyse est conduite pour minimiser cette génération et, par suite, la perte d’énergie utile.
L'optimum des conditions d’écoulement 4 partir de cette perspective thermodynamiquement avantageuse
est déterminé pour une gouttelette en combustion a faible nombre de Reynolds et on obtient un nombre
de transfert optimal. Ce nombre ainsi obtenu dépend directement du quarré de la vitesse relative et
inversement de Iélévation nette d’enthalpie due 4 la combustion et au rapport des températures d’ambiance
et de flamme. Le quarré de la vitesse relative est une faible fraction de la libération de chaleur et, pour
opérer aux conditions thermodynamiques optimales, le nombre de Reynolds de la gouttelette doit étre
grand, ce qui suggere une grosse taille de goutte et une faible viscosité de gaz. On considére aussi des
circonstances se rapportant & la pratique industrielle et on conclut que la pratique est cohérente avec les
implications de I'analyse de la seconde loi.
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BETRACHTUNG DER KONVEKTIVEN TROPFCHENVERBRENNUNG IM HINBLICK
AUF DEN ZWEITEN HAUPTSATZ

Zusammenfassung—Es wird die Entropieerzeugung aufgrund der Verbrennung von Partikeln in ciner
Gasstromung betrachtet, und die einzelnen Beitrdge werden miteinander verglichen. Mit Hilfe des zweiten
Hauptsatzes wird eine Betrachtung angestellt, um die Entropieerzeugung und damit die verlorene verfiig-
bare Arbeit zu minimieren. Die aufgrund dieser thermodynamisch vorteilhaften Perspektive optimalen
Strémungsbedingungen werden fiir ein brennendes Tropfchen bei niedriger Reynolds-Zahl und einer
daraus resulticrenden optimalen Ubertragungszahl bestimmt. Die so ermittelte Ubertragungszahl hingt
direkt vom Quadrat der relativen Strémungsgeschwindigkeit ab und ist umgekehrt proportional zur Netto-
Enthalpieerh6hung aufgrund der Verbrennung und zum Verhiltnis von Umgebungs- und Flammtem-
peratur. In realistischen Strémungen, bei denen die Ubertragungszahl und die Wirmeabgabe vorgegeben
sind, stehen diese GroBen in einer bestimmten Beziehung zu der relativen Strdmungsgeschwindigkeit und
dem Verhiltnis von Umgebungs- und Flammtemperatur, um bei optimalen Bedingungen zu arbeiten. Das
Quadrat der relativen Stromungsgeschwindigkeit in solchen Strémungen ist ein geringer Bruchteil der
Netto-Wirmeabgabe. Fiir einen Betrieb bei optimalen thermodynamischen Bedingungen muB daher dic
Reynolds-Zahl der Tropfchen groB sein, wobei groBe Tropfchen und eine geringe Gasviskositit vorge-
schlagen werden. Im Hinblick auf die technische Praxis kann gefolgert werden, daB diese innerhalb gewisser
Grenzen mit den Ergebnissen aus den Betrachtungen nach dem zweiten Hauptsatz iibereinstimmt.

AHAJIN3 BTOPOT'O 3AKOHA TEPMOJIMHAMMKU B 3AJTAYAX KOHBEKTHUBHOTI'O
I'OPEHHA KATIEJIb

Ammorams—HccreayeTcs IPOM3BOACTBO YHTPONHH 3a CHET TOPSAIIMX $acTHIl B oToke rasa. Ha ocwo-
BAHHM MMHMMHM3ALUM MPOM3BOJACTBA 3HTPOIMH ONpENEIAIOTCA ONTUMAJILHBIE YCIIOBHA TEHEHHA A
ropslueil Kari¥ GPA HA3KOM 4ucne PefiHONbACa B ONTHMANILHOE YACIIO MEPEHOCa, KOTOPOE MPSAMO po-
NOPLMOHAILHO KBAAPATY OTHOCHTENILHON CKOPOCTH ¥ 06PaTHO NPONOPIHOHATEHO CYMMAPHOMY POCTY
SHTANbONH, 06YCIOBJIEHHOMY TOPEHHEM, ¥ OTHOLIEHHIO TEMIEPATYP OKpYXarollleH cpeasl H nnamenu. B
ONTHMAJILHBIX YCJIOBHSX PH PeaibHbIX TEYEHHAX C (PUKCHPOBAHHBLIMH YHCJIOM NEPEHOCA H CYMMAPHBIM
TEIJIOBLIIECHAEM 3TH BEJHYMHBI 3aBHCAT OT OTHOCHTEJBHOH CKOPOCTH M OTHOIUEHHS TEMIEpaTyp
OKpyXaloulei cpeasl ¥ wiameHn. KBagpaT OTHOCHTENEHON CKOPOCTH TAKHX TEYEHUN COCTABIIAET MAJIYIO
YACTL CYMM2pPHOTO TEIUIOBBUIEJIEHHS, MMO3TOMY ONTHMAJLHBIE TEpMOAMHAMMYECKHE YCIIOBHS IPH
GopiIoM uuciie PeliHoNbAca OpeaNONaraloT KPYIHEIA pa3sMep Kallll B MaJylo BA3KOCTh rasa. Ipeasno-
KEHHAs METOIHKA HCTONB3YeTCS B KOHKPETHBIX 3a1a4aX, BCTPEYAIOIIMXCS B HHXEHEPHOH MPaKTHKE.



